Sunday, 29 May 2016



So far science has discovered four forces (the weak force, the strong force, electromagnetic force and of course gravity) of nature but one more could just be added, hidden in natures' entangled tree, physicists in hungary believe they may have found it.
   

Starting from the larger end of the scale, gravity is responsible for holding together the planets and gravity, and electromagnetic force is in charge of keeping our molecules together.
 
“At the smallest level are the two other forces: the strong nuclear force is the glue for atomic nuclei, and the weak nuclear force helps some atoms go through radioactive decay,”  writes Ryan F. Mandelbaum for popular science “These forces seemed to explain the physics we can observe, more or less.”
Evidence of this fifth force was spotted last year, when a team from the  Hungarian Academy of Science reported that they’d fired protons at lithium-7, and in the fall out, had detected a brand new super-light boson that was only 34 times heavier than an electron.

 
The US team, led by Jonathan Feng from the University of California, Irvine, showed that the data didn’t conflict with previous experiments, and calculated that the new boson could indeed be carrying a fifth fundamental force – which is when the science world started to get interested.
That paper hasn’t been peer-reviewed as yet, so we can’t get too excited, but it was uploaded so that the other physicists could scrutinise the results and add their own findings, which is what’s happening now.
As Nature reports, researchers around the world are racing to conduct follow-up tests to verify the Hungarian discovery, and we can expect results within around a year.
But if you’re anything like me, you’re probably wondering, what does a super-light boson have to do with a new force of nature?


 HOW IT WAS DONE


The Hungarian team, led by physicist Attila Krasznahorkay, were looking for. To do that, they fired protons at thin targets of lithium-7, a collision that created unstable beryllium-8 nuclei, which then decayed into pairs of electrons and positrons.
“According to the standard model, physicists should see that the number of observed pairs drops as the angle separating the trajectory of the electron and positron increases,”    Edwin Cartlidge writes for Nature.

“Perhaps we are seeing our first glimpse into physics beyond the visible Universe.”
But that wasn’t what the team saw – at about 140 degrees, the number of these pairs jumped, creating a little bump before dropping off again at higher angles.
This ‘bump’ was evidence of a new particle, according to Krasznahorkay and his team. They calculated that the mass of this new particle would be around 17 megaelectronvolts, which isn’t what was expected for the ‘dark photon’, but could be evidence of something else entirely.
“We are very confident about our experimental results,” Krasznahorkay told Nature. He says that the chance of this bump being an anomaly is around 1 in 200 billion (but let’s keep in mind that no other team has confirmed this as yet.)
The analysis by Feng’s team in the US didn’t involve a repeat of the experiment, but simply used calculations to verify that, theoretically at least, the proposed super-light boson Krasznahorkay detected could be capable of carrying a new fundamental force.


Friday, 27 May 2016



 

Time

It’s one of those things that we take for granted—time moves forward and never backward. But did you ever stop to wonder why it moves in one direction, as opposed to the other?

The question continues to stump physicists. After all, there are certain physical processes that are actually time-reversible—they look the same no matter which way you run them.
For example, gravity operates the same way regardless of Time’s Arrow; a planet will orbit a star in exactly the same way, just with the direction of that orbit reversed. But there is one aspect of the universe that is dependent on the direction of Time’s Arrow: the Second Law of Thermodynamics This states that the disorder of a closed system (such as our universe) must increase, never decrease.
It’s commonly called “entropy,” and it’s why broken eggs don’t suddenly reassemble themselves, or why dead things don’t suddenly come back to life. Disorganization and chaos are downhill, order and complexity are uphill; complex systems like stars and planets and human beings may emerge locally, but they require an inordinate amount of energy to create, which only increases the overall entropy of the system.

This is why the Second Law of Thermodynamics is universally reckoned as the mechanism that imparts directionality to time—although, understanding the how of a thing is not the same as understanding the why of it.

In the quest to understand the origins of Time’s Arrow, two Armenian physicists, A. E. Allahverdyan and V. G. Gurzadyan, decided to search for a link between so-called “dark energy” and the Second Law of Thermodynamics. Dark energy is somewhat mysterious and it is proposed as an explanation for why the universe is continuing to expand, rather than decelerating and collapsing, as our current understanding of gravity dictates it should.

The scientists ran a simulation to test how the orbit of a planet would change, depending upon whether dark energy was absent, or present as in our own universe. What they found was intriguing, to say the least: if dark energy is absent, or if gravity pulls space together, a planet simply orbits its star in the accepted fashion, regardless of whether time runs “forward” or “backward.” But introduce dark energy to push space apart, and eventually, over immense time scales, the planet is flung away from the star altogether.
Which means there is a temporal directionality when dark energy is introduced—in one direction, we see a planet escaping a star’s gravity; in the other, a planet is captured by a star and becomes a part of its retinue.

There’s nothing absolutely conclusive about the study, which was  physical review E; the authors aren’t saying dark energy is responsible for Time’s Arrow. But there’s something decidedly suggestive about it all—that the Second Law of Thermodynamics and dark energy might be two facets of the same phenomenon, some mysterious quantity of our universe that imparts or requires an arrow of time.
 source: Futurism













Part of the difficulty in tackling viruses like ebola is that they’re all so different, and each one can regularly mutate to create different strains within the same virus.
To address this, scientists have been busy looking at common characteristics of viruses that could be used to develop an all-powerful vaccine capable of fighting off any infection, and researchers over at IBM say they’re getting close.
It’s exciting stuff: A macromolecule – a giant molecule made up of smaller units – has now been developed that could have the potential to block multiple types of viruses, despite the many variations involved. It’s still early days yet, but the results could lead to drugs that aren’t tricked by mutating virus strains.
The scientists, from tech giant IBM and the Institute of Bioengineering and Nanotechnology in Singapore, ignored the RNA and DNA of the viruses they used for testing – these would traditionally be the areas to target, as they give the viruses their characteristics, but they also tend to vary from virus to virus and mutation to mutation.
Instead the team looked at  glycoproteins large molecules attached to the outside of all viruses and capable of latching onto cells in the body, which is the process that actually makes us sick. The macromolecule that’s now been developed attracts viruses and then hitches a ride on these glycoproteins, neutralising their acidity levels and making them less able to replicate in the process.
The macromolecule has another method of attack too – a sugar called mannose, which attaches itself to healthy immune cells and draws them closer to the virus, speeding up the fight against the infection.
Based on the tests already carried out by the team on viruses such as Ebola and dengue, the macromolecule works as intended. It binds itself to the glycoproteins, disabling viral ability to infect healthy cells, while the mannose was also found to be effective in stopping viruses from infecting immune cells.
 With further study, we could see vaccinations that are capable of protecting us against a whole range of viruses.
“It’s almost a daunting task to design any kind of therapeutic for a virus,” lead researcher James Hedrick of IBM Research explained Samantha Olson at Medical.  “[The glycoprotein is] kind of like honey. It’s kind of sticky. We can now competitively go after this cell faster than the virus can go after your immune cell. And once we block those receptors, we prevent infection.”
The group’s findings have been published in the journal Macromolecules

Sample Text

Blog Archive

Powered by Blogger.

Video

Popular Posts

Our Facebook Page